3.80 \(\int x (d-c^2 d x^2)^{3/2} (a+b \sin ^{-1}(c x)) \, dx\)

Optimal. Leaf size=153 \[ -\frac {\left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2 d}+\frac {b d x \sqrt {d-c^2 d x^2}}{5 c \sqrt {1-c^2 x^2}}-\frac {2 b c d x^3 \sqrt {d-c^2 d x^2}}{15 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^5 \sqrt {d-c^2 d x^2}}{25 \sqrt {1-c^2 x^2}} \]

[Out]

-1/5*(-c^2*d*x^2+d)^(5/2)*(a+b*arcsin(c*x))/c^2/d+1/5*b*d*x*(-c^2*d*x^2+d)^(1/2)/c/(-c^2*x^2+1)^(1/2)-2/15*b*c
*d*x^3*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/25*b*c^3*d*x^5*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.09, antiderivative size = 153, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.080, Rules used = {4677, 194} \[ -\frac {\left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2 d}+\frac {b c^3 d x^5 \sqrt {d-c^2 d x^2}}{25 \sqrt {1-c^2 x^2}}-\frac {2 b c d x^3 \sqrt {d-c^2 d x^2}}{15 \sqrt {1-c^2 x^2}}+\frac {b d x \sqrt {d-c^2 d x^2}}{5 c \sqrt {1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[x*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(b*d*x*Sqrt[d - c^2*d*x^2])/(5*c*Sqrt[1 - c^2*x^2]) - (2*b*c*d*x^3*Sqrt[d - c^2*d*x^2])/(15*Sqrt[1 - c^2*x^2])
 + (b*c^3*d*x^5*Sqrt[d - c^2*d*x^2])/(25*Sqrt[1 - c^2*x^2]) - ((d - c^2*d*x^2)^(5/2)*(a + b*ArcSin[c*x]))/(5*c
^2*d)

Rule 194

Int[((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Int[ExpandIntegrand[(a + b*x^n)^p, x], x] /; FreeQ[{a, b}, x]
&& IGtQ[n, 0] && IGtQ[p, 0]

Rule 4677

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*(x_)*((d_) + (e_.)*(x_)^2)^(p_.), x_Symbol] :> Simp[((d + e*x^2)^
(p + 1)*(a + b*ArcSin[c*x])^n)/(2*e*(p + 1)), x] + Dist[(b*n*d^IntPart[p]*(d + e*x^2)^FracPart[p])/(2*c*(p + 1
)*(1 - c^2*x^2)^FracPart[p]), Int[(1 - c^2*x^2)^(p + 1/2)*(a + b*ArcSin[c*x])^(n - 1), x], x] /; FreeQ[{a, b,
c, d, e, p}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0] && NeQ[p, -1]

Rubi steps

\begin {align*} \int x \left (d-c^2 d x^2\right )^{3/2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=-\frac {\left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2 d}+\frac {\left (b d \sqrt {d-c^2 d x^2}\right ) \int \left (1-c^2 x^2\right )^2 \, dx}{5 c \sqrt {1-c^2 x^2}}\\ &=-\frac {\left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2 d}+\frac {\left (b d \sqrt {d-c^2 d x^2}\right ) \int \left (1-2 c^2 x^2+c^4 x^4\right ) \, dx}{5 c \sqrt {1-c^2 x^2}}\\ &=\frac {b d x \sqrt {d-c^2 d x^2}}{5 c \sqrt {1-c^2 x^2}}-\frac {2 b c d x^3 \sqrt {d-c^2 d x^2}}{15 \sqrt {1-c^2 x^2}}+\frac {b c^3 d x^5 \sqrt {d-c^2 d x^2}}{25 \sqrt {1-c^2 x^2}}-\frac {\left (d-c^2 d x^2\right )^{5/2} \left (a+b \sin ^{-1}(c x)\right )}{5 c^2 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 84, normalized size = 0.55 \[ \frac {d \sqrt {d-c^2 d x^2} \left (\frac {b c \left (\frac {c^4 x^5}{5}-\frac {2 c^2 x^3}{3}+x\right )}{\sqrt {1-c^2 x^2}}-\left (c^2 x^2-1\right )^2 \left (a+b \sin ^{-1}(c x)\right )\right )}{5 c^2} \]

Antiderivative was successfully verified.

[In]

Integrate[x*(d - c^2*d*x^2)^(3/2)*(a + b*ArcSin[c*x]),x]

[Out]

(d*Sqrt[d - c^2*d*x^2]*((b*c*(x - (2*c^2*x^3)/3 + (c^4*x^5)/5))/Sqrt[1 - c^2*x^2] - (-1 + c^2*x^2)^2*(a + b*Ar
cSin[c*x])))/(5*c^2)

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 159, normalized size = 1.04 \[ -\frac {{\left (3 \, b c^{5} d x^{5} - 10 \, b c^{3} d x^{3} + 15 \, b c d x\right )} \sqrt {-c^{2} d x^{2} + d} \sqrt {-c^{2} x^{2} + 1} + 15 \, {\left (a c^{6} d x^{6} - 3 \, a c^{4} d x^{4} + 3 \, a c^{2} d x^{2} - a d + {\left (b c^{6} d x^{6} - 3 \, b c^{4} d x^{4} + 3 \, b c^{2} d x^{2} - b d\right )} \arcsin \left (c x\right )\right )} \sqrt {-c^{2} d x^{2} + d}}{75 \, {\left (c^{4} x^{2} - c^{2}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

-1/75*((3*b*c^5*d*x^5 - 10*b*c^3*d*x^3 + 15*b*c*d*x)*sqrt(-c^2*d*x^2 + d)*sqrt(-c^2*x^2 + 1) + 15*(a*c^6*d*x^6
 - 3*a*c^4*d*x^4 + 3*a*c^2*d*x^2 - a*d + (b*c^6*d*x^6 - 3*b*c^4*d*x^4 + 3*b*c^2*d*x^2 - b*d)*arcsin(c*x))*sqrt
(-c^2*d*x^2 + d))/(c^4*x^2 - c^2)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [C]  time = 0.19, size = 524, normalized size = 3.42 \[ -\frac {a \left (-c^{2} d \,x^{2}+d \right )^{\frac {5}{2}}}{5 c^{2} d}+b \left (-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (16 c^{6} x^{6}-28 c^{4} x^{4}-16 i \sqrt {-c^{2} x^{2}+1}\, x^{5} c^{5}+13 c^{2} x^{2}+20 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}-5 i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (i+5 \arcsin \left (c x \right )\right ) d}{800 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (c^{2} x^{2}-i \sqrt {-c^{2} x^{2}+1}\, x c -1\right ) \left (i+\arcsin \left (c x \right )\right ) d}{16 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (\arcsin \left (c x \right )-i\right ) d}{16 c^{2} \left (c^{2} x^{2}-1\right )}+\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (4 i \sqrt {-c^{2} x^{2}+1}\, x^{3} c^{3}+4 c^{4} x^{4}-3 i \sqrt {-c^{2} x^{2}+1}\, x c -5 c^{2} x^{2}+1\right ) \left (-i+3 \arcsin \left (c x \right )\right ) d}{96 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i \sqrt {-c^{2} x^{2}+1}\, x c +c^{2} x^{2}-1\right ) \left (11 i+45 \arcsin \left (c x \right )\right ) \cos \left (4 \arcsin \left (c x \right )\right ) d}{1200 c^{2} \left (c^{2} x^{2}-1\right )}-\frac {\sqrt {-d \left (c^{2} x^{2}-1\right )}\, \left (i c^{2} x^{2}-c x \sqrt {-c^{2} x^{2}+1}-i\right ) \left (7 i+15 \arcsin \left (c x \right )\right ) \sin \left (4 \arcsin \left (c x \right )\right ) d}{600 c^{2} \left (c^{2} x^{2}-1\right )}\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x)

[Out]

-1/5*a/c^2/d*(-c^2*d*x^2+d)^(5/2)+b*(-1/800*(-d*(c^2*x^2-1))^(1/2)*(16*c^6*x^6-28*c^4*x^4-16*I*(-c^2*x^2+1)^(1
/2)*x^5*c^5+13*c^2*x^2+20*I*(-c^2*x^2+1)^(1/2)*x^3*c^3-5*I*(-c^2*x^2+1)^(1/2)*x*c-1)*(I+5*arcsin(c*x))*d/c^2/(
c^2*x^2-1)-1/16*(-d*(c^2*x^2-1))^(1/2)*(c^2*x^2-I*(-c^2*x^2+1)^(1/2)*x*c-1)*(I+arcsin(c*x))*d/c^2/(c^2*x^2-1)-
1/16*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(arcsin(c*x)-I)*d/c^2/(c^2*x^2-1)+1/96*(-d*(c
^2*x^2-1))^(1/2)*(4*I*(-c^2*x^2+1)^(1/2)*x^3*c^3+4*c^4*x^4-3*I*(-c^2*x^2+1)^(1/2)*x*c-5*c^2*x^2+1)*(-I+3*arcsi
n(c*x))*d/c^2/(c^2*x^2-1)-1/1200*(-d*(c^2*x^2-1))^(1/2)*(I*(-c^2*x^2+1)^(1/2)*x*c+c^2*x^2-1)*(11*I+45*arcsin(c
*x))*cos(4*arcsin(c*x))*d/c^2/(c^2*x^2-1)-1/600*(-d*(c^2*x^2-1))^(1/2)*(I*c^2*x^2-c*x*(-c^2*x^2+1)^(1/2)-I)*(7
*I+15*arcsin(c*x))*sin(4*arcsin(c*x))*d/c^2/(c^2*x^2-1))

________________________________________________________________________________________

maxima [A]  time = 0.57, size = 87, normalized size = 0.57 \[ -\frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}} b \arcsin \left (c x\right )}{5 \, c^{2} d} - \frac {{\left (-c^{2} d x^{2} + d\right )}^{\frac {5}{2}} a}{5 \, c^{2} d} + \frac {{\left (3 \, c^{4} d^{\frac {5}{2}} x^{5} - 10 \, c^{2} d^{\frac {5}{2}} x^{3} + 15 \, d^{\frac {5}{2}} x\right )} b}{75 \, c d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c^2*d*x^2+d)^(3/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

-1/5*(-c^2*d*x^2 + d)^(5/2)*b*arcsin(c*x)/(c^2*d) - 1/5*(-c^2*d*x^2 + d)^(5/2)*a/(c^2*d) + 1/75*(3*c^4*d^(5/2)
*x^5 - 10*c^2*d^(5/2)*x^3 + 15*d^(5/2)*x)*b/(c*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int x\,\left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,{\left (d-c^2\,d\,x^2\right )}^{3/2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2),x)

[Out]

int(x*(a + b*asin(c*x))*(d - c^2*d*x^2)^(3/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int x \left (- d \left (c x - 1\right ) \left (c x + 1\right )\right )^{\frac {3}{2}} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*(-c**2*d*x**2+d)**(3/2)*(a+b*asin(c*x)),x)

[Out]

Integral(x*(-d*(c*x - 1)*(c*x + 1))**(3/2)*(a + b*asin(c*x)), x)

________________________________________________________________________________________